加入收藏 | 设为首页 | 会员中心 | 我要投稿 唐山站长网 (https://www.0315zz.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 动态 > 正文

20+所高校关注“成渝双城”鲲鹏高校行

发布时间:2021-02-06 12:47:36 所属栏目:动态 来源:互联网
导读:detail 中有大量的逻辑,除了基本的商品信息,还有很多其他的内容,这就是慢的原因。 并行调用 针对一个接口,如果设计到多个内部 RPC 服务或者多个外部接口,在接口之间没有关联关系的情况下,我们可以采用并行调用的方式来提高性能。 CompletableFuture 就

detail 中有大量的逻辑,除了基本的商品信息,还有很多其他的内容,这就是慢的原因。

并行调用

针对一个接口,如果设计到多个内部 RPC 服务或者多个外部接口,在接口之间没有关联关系的情况下,我们可以采用并行调用的方式来提高性能。

CompletableFuture 就非常适合并行调用的场景,关于 CompletableFuture 的使用本文不做详细说明,做 Java 的都要会用。

除了 CompletableFuture 之外,对于集合类的处理,可以用 parallelStream 来实现并行调用。

在微服务中有一层专门用于聚合 API, 聚合层就非常适合并行调用,一个功能或者一个页面展示会涉及到多个接口,通过聚合层在后端进行接口的聚合和数据的裁剪,一起响应给前端。

上缓存

缓存也是优化中最常用的,效果提升最明显的,成本也不大。对于缓存,也不要滥用,不是所有场景都可以靠堆缓存来提高性能的。

首先对于实时性要求不高的业务场景可以优先使用缓存,也不用太考虑更新的问题,自然过期就行。

实时性要求高的业务场景,用缓存一定要有完整的缓存更新机制,否则很容易造成业务数据和缓存数据不一致的情况。

建议的做法是订阅 binlog 来统一更新缓存,不要在代码中去更新或者失效缓存,简单的场景还好,入口就那几个,问题不大。有些数据在多个场景下使用,需要更新的入口太多了,
 

  • 提供天文物体的颗粒检测和形态分类——这实际上是闻所未闻的,也是不可能人为实现的。实际上,该模型能够恢复用于训练模型的调查数据中存在的超过98%的星系。
  • 自动发现星系并处理复杂图像而无人为干扰,从而实现了强大的像素级分类。
  • ·提供全面了解星系变革的机会,且没有诸如人为偏见或错误之类的障碍。无论是了解星系随时间演变的方式,还是了解未来发展方向,这个AI赋能的程序都是我们了解纯净星系形成的最佳机会。
  • 消除了对源进行假阳性鉴定的可能,这本是天文学领域的普遍现象。
  • 增加易用性:通过灵活图像传输系统(FITS),支持天文数据常用数字格式的图像,你可以告别转换望远镜图像和数据,享受顺畅的体验。

即使用古老的计算机处理器,AI重力透镜也能够在20分钟内检查21789张图像。

根据美国宇航局的一份新闻稿:“新发现的开普勒90i是一颗炙热的岩石行星,每14.4天绕其恒星运行一次——这是通过谷歌的机器学习发现的。”

显然,人工智能在天体物理学中的应用提供了“天文”的回报,重新定义了天体科学领域的创新,揭开了宇宙深处最大的一些谜团。布兰特·罗伯逊强调人工智能和天体物理学迎来了有益的集体高潮,他说:“天文学正处于一场新的数据革命的尖端”,没有更合适的总结了。

随着天文学家们开始用人工智能来发现星系,他们不在需要费心费力去探测、分类、解码空间物体,或者寻找新的行星。在21世纪,人工智能超级望远镜可以减少他们的工作。

此外,观星者们也在庆祝,人工智能仪器为他们重新探索超乎想象的世界提供了可能性。埃隆·马斯克会如何评价此事呢?
 

明明数据已经查询出来了,又根据 ID 重新去查询了一次,数量越多,浪费的时间越多。这里只是举例,我相信在真实的项目中大量存在重复查询的情况,之前我还写过一篇文章,讲解如何解决这种重复查询问题,感兴趣的可以查看这篇文章:简直骚操作,ThreadLocal还能当缓存用

按需查询

很多业务逻辑不复杂的功能,却响应很慢。往往都是写代码的时候没有思考,随便就调用一些已经存在的方法,导致整体响应变慢,总结起来就是:性能问题大部分都是代码写出来的。

说个场景,大家肯定都见到过。参数是一个商品 ID, 功能是上架商品,需要进行状态的判断,符合条件才能上架。这个场景下只需要获取商品的状态进行判断即可,有的时候你看到的代码往往都是下面的方式:

(编辑:唐山站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读