数据科学家不能错过的24个Python库
间,全世界范围内的Python谷歌搜索指数已经超越了Java(Python王者到来?Python谷歌搜索指数已经超越Java) 。说明Python越来越重要,同时,Python也是数据科学家必不可少的工具。最近,Analytics Vidhya总结了24个数据科学家不能错过的24个Python库,也是很不错的一份list,我们一起来看看。也算是入门同学的一个学习和选择的方向。 这24个库包含在以下几个领域中,本文主要介绍前4种:
数据收集的Python 您是否遇到过一种情况,即您没有足够的数据来解决您想要解决的问题? 这是数据科学中一个永恒的问题。 这就是为什么学习如何提取和收集数据对数据科学家来说是一项非常关键的技能。 它开辟了以前无法实现的途径。 所以这里有三个有用的Python库,用于提取和收集数据。 Beautiful Soup Beautiful Soup是一个HTML和XML解析器,它为解析的页面创建解析树,用于从网页中提取数据。 也就是主要为爬虫爬到的网页数据进行数据抽取功能。enium是一种用于自动化浏览器的流行工具。 它主要用于行业测试,但对于网络抓取也非常方便。 实际上,Selenium在IT领域变得非常受欢迎。 数据清理和表示的Python库 好吧 - 所以你已经收集了你的数据并准备好继续挖掘。现在是时候清理我们可能面临的任何混乱数据并学习如何操作它,以便我们的数据可以用于建模。 这里有四个Python库可以帮助您实现这一目标。 请记住,我们将处理现实世界中的结构化(数字)和文本数据(非结构化) - 这个库列表涵盖了所有这些。数据处理和分析方面,没有什么能比Pandas更胜一筹。 它是***的Python库。 Pandas是用Python语言编写的,特别适用于操作和分析任务。 该名称来源于术语“面板数据”,这是一个数据集的计量经济学术语,包括对同一个体的多个时间段的观察—— 维基百科 PyOD 在检测异常值时苦苦挣扎? 你不是一个人。 这是有抱负(甚至已建立)数据科学家的常见问题。 你如何定义异常值? 别担心,PyOD库可以帮到您。
PyOD是一个全面且可扩展的Python工具包,用于检测异常对象。 异常检测是识别与大多数数据显着不同的稀有项目或观察值。 (编辑:唐山站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |