加入收藏 | 设为首页 | 会员中心 | 我要投稿 唐山站长网 (https://www.0315zz.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 动态 > 正文

我们AI给你写代码

发布时间:2021-05-05 15:24:06 所属栏目:动态 来源:互联网
导读:输入任务要求之后,先经过概要生成器,生成满足任务要求概率比较高的代码概要,即可能满足任务要求的初始代码,细节并不丰富。然后,代码概要进入代码合成器模块,找到满足任务要求的模块。 概要生成器,是一个带有注意力机制的seq2seq循环神经网络(RNN),

输入任务要求之后,先经过概要生成器,生成满足任务要求概率比较高的代码概要,即可能满足任务要求的初始代码,细节并不丰富。然后,代码概要进入代码合成器模块,找到满足任务要求的模块。

概要生成器,是一个带有注意力机制的seq2seq循环神经网络(RNN),在给定任务之后,通过LSTM编码器对其进行编码,然后再逐token解码。

代码合成器,有两个组成部分:广度优先概率枚举器和神经网络识别器。前者根据可能性从大到小枚举代码sketch, 后者根据任务要求来指导这一过程。

具体效果怎么样?

为了验证模型的性能,研究团队选择了两个模型与其进行对比。

分别是只有合成器的模型(Synthesizer only)和只有生成器的模型(Generator only)。

只有合成器的模型,相当于研究中代码合成器模块,进行模式识别之后,从头开始枚举所有可能的编码。与微软研究院研究团队2016年提出的“Deepcoder”模型媲美。

只有生成器的模型,相当于研究中概要生成器模块,用来预测完整的代码。与微软研究院和MIT团队在2017年提出的“RobustFill”模型媲美。

进行对比的任务是数组列表、字符串转换和自然语言要求。

在数组列表任务中,与其他两项研究相比,研究中的模型可以在简单的程序中呈现很好的性能。正展现模型能力的,是在AlgoLisp数据集中进行的测试,这一数据集中,不仅有数组列表和字符串相关的输入输出示例,还有相应的自然语言描述。

在这个数据集上,研究者检验了模型在非结构化数据情况下的性能。

测试结果表明,模型的表现完全超过了先前学者的研

(编辑:唐山站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读